
AD-A 2 6 5 804

RL-TR-92-343
Interim Report
December 1992

PERFORMANCE MEASURES OF PARALLEL
DIGITAL SIGNAL PROCESSOR SYSTEMS

The MITRE Corporation

Joel D. Harris

DTIC
S ELECTE

JUN16
1993 UE

APPROVED FOR PUBLIC RELEASE" DISTRIBUTION UNLIMITED.

•$ 93-13402

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

93 6 15 104

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-92-343 has been reviewed and is approved for publication.

APPROVED: £JJ
PAUL M. ENGELHT
Project Engineer

FOR THE COMMANDER:

JOHN A.GAIR
Technical Director
Command, Control and Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL(C3CB)Gri~fIss AFB NY 13441-4505. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE I FO Appo e07....
P#hc rewti budm for f&ts c•d•s o rdefrnao s esorfed to avwmg. 1 rxx pe respa , rso Ir~s Irnu t• ru.wr rI--rs smvg SxrKJ OE so
gxhwr'g u1 nwwr•r, tth dwa run :•ed cai i ln r oft ruewwV• col--r of H =a Sefd Sc cor.- srngwdrg•- vWds • v Sw. or "Y S m 1 rwax L ý-,
ccdsczrof" -sta, tUrr V 04p cxs o reciszg &is buibr to Was o ,Heeg1~rtus Sw'.AoW Duucegtorlefa rtanrm r Donau" wdPeprs 1215 esc,
Owis Hghwu. SýA. 1204, Afrk~-gto VA 22~4= aldto the Otfl o MWer~nwt Mnd BUCgK PmWWic F4e xriPrpmc (07C4-0l OM r Waw'u'ý DC 2OW3
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1992 Interim Sep 91 - Aug 92

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
PERFORMANCE MEASURES OF PARALLEL DIGITAL SIGNAL C - F19628-89-C-0001
PROCESSOR SYSTEMS PR - MIE

__..... TA - 71
6. AUTHOR(S) WU - 50
Joel D. Harris

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

The MITRE Corporation REPORT NUMBER

Burlington Road
bedford MA 01730-0208 MrR 11263

9. SPONSORINGQ/MONITORING AGENCY NAME(S) AND ADDRESS(Es' 10. SPONSORING/MONITORING
Rome Laboratory (C3CB) AGENCY REPORT NUMBER
525 Brooks Road

Griffiss AFB NY 13441-'+505 RL-TR-92-343

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Paul M. Engelhart/C3CB/(315)330-4063.

12a. DISTRIBUT11ON/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT We*- 2w -de-. c,,)
This report summarizes a portion of the research accomplished under MITRE MOIE 7150,
entitled "Parallel Signal Processing." The work performed for this specific task
concentrated on developing and presenting useful measures of performance for real-time
parallel digital signal processor systems. Using the Common Signal Processor (CSP) as
a testbed for the investigation, a three level method of measurement was followed. The
results were used to evaluate the strengths and weaknesses of the CSP in processing
selected applications and to provide insight into its general capability. A discussion
of issues related to the process of benchmarking in general and lessons learned is also
included.

14. SUBJECT TERMS iS NUM8ER OF PAGES
Parallel Processing, Signal Processing, Performance Measures 64

MB PRICE CODE

17. SECURIY CLASS;,;CAIION 18. $ECUHIIY CLASSIFICATION 1g. SECURITY CLASSIFICATION 20. UMITATION OF ARSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 754C C,1 2W0.5D Stardwo Formn 2q8 (eRv 2•
Presbed by ANSI St1 Zq a
2g-1c02

ABSTRACT

Methods developed to measure the performance of conventional computer systems
have limited applicability to the class of computers that have been designed recently to
execute real-time digital signal processing tasks. The work described here addresses the
question of how to develop and present useful measures of performance for these types of
computers. Using the Common Signal Processor (from IBM) as a testbed for the
investigation, a three level method of measurement was followed. One level focuses on the
architecture of the CSP, characterizing the physical limits of the system components and the
process of software development. The other two levels focus on operational characteristics,
the first level on abstract tasks running at maximum speed and the second on tasks
implementing real applications. The results are used to evaluate the CSPs strengths and
wAkneses in processiij selecied appiicatio,,, and to provide some insight into its general
capability. A discussion of issues related to the process of benchmarking in general and
lessons learned from work performed on the Common Signal Processor is included.

"Acc'esion For

NTIS CRA&I
DTIC TAB
Ujannotinced 1]
Jastification

By
Disti ibution I

Availability Codes
Avail andsor

Dist Special

DTIC Q.d]ALITY ý45pEGCTEPA

iii.o

TABLE OF CONTENTS

SECTION PAGE

1 Introduction 1

2 Definition of Performance Measures 5

2.1 Purpose of Performance Measures 5
2.2 Measurement Concepts 5
2.3 Target Class of Processors 8
2.4 Measures of Performance 8

2.4.1. Peak Measures 9
2.4.2. Abstract Measures 9
2.4.3. Application Based Measures 11

3 Common Signal Processor System Description 13

3.1 Introduction 13
3.2 CSP Architecture 13
3.3 The CSP Software Development Tools 16
3.4 Developing CSP Software 18
3.5 Developing Benchmarks Using the CSP Tools 20

4 Results of Common Signal Processor Performance Measurement 23

4.1 Introduction 23
4.2 Peak Measures 23

4.2.1 Processing Element 23
4.2.2 Sensor Interface 24
4.2.3 Global Memory 25
4.2.4 Data Network 26
4.2.5 System Configuration 27

4.3 Abstract Measures 27
4.3.1 Data Transfer 31
4.3.2 Scheduling Overhead 33
4.3.3 Processing Element Computation Rate 36

4.4 Application Measures 37
4.5 Software Development Times 43
4.6 Results Analysis 43

4.6.1 System Execution Model 43
4.6.2 Data Transfers 44
4.6.3 Processing Elements (FPPEs) 44

V

SECTION PAGE

4.6.4 Software Development 45
4.6.5 Summary 45

5 Conclusion 47

List of References 51

Distribution List 53

vi

LIST OF FIGURES

FIGURE PAGE

1 Generic Data Transfer Network Example 6

2 Common Signal Processor Architecture High Level
Block Diagram (Courtesy of IBM) 14

3 CSP Data Flow Graph System Operation Model 15

4 Data Flow Event Driven Execution Mechanism 16

5 CSP System Software 17

6 CSP Software Development Tools 18

7 Task Specification for the Graph Translator 19

8 Floating Point Processing Element 24

9 Sensor Interface High-Level Block Diagram 25

10 Global Memory Functional Block Diagram 26

11 Data Network Element 27

12 Abstract Measures Data Flow Graph 29

13 Mapping of Abstract Measures Data Flow Graph to CSP 29

14 Maximum Throughput Execution Timeline 30

15 Task Scheduling and Intertask Data Transfers 31

16 Memory Contention Problems Example 33

17 One Complete Task Execution 34

18 Subtask Scheduling 35

19 FPS- 117 Ground Based Radar - Single Channel Data Flow Graph 37

20 Single CIT/Cycle Mapping of 117 Processing to CSP 4 FPPE Configuration 39

21 Double CIT/Cycle Mapping of 117 Processing to CSP 4 FPPE Configuration 40

vii

FIGURE PAGE

22 FPS- 117 Radar Application Single CIT/Cycle Mapping 41

23 FPS- 117 Radar Application Double CIT/Cycle Mapping 41

LIST OF TABLES

TABLE PAGE

I Peak Measures Presentation Format 10

2 Peak Measures of the CSP 28

3 Data Network Measures 32

4 Scheduling Overhead Times 35

5 Processing Element Abstract Performance 36

6 Processing Element Application Based Performance
Single Cycle Mapping 42

7 Processing Element Application Based Performance
Double Cycle Mapping 42

8 Software Development Times 43

viii

SECTION 1

INTRODUCTION

Many advanced signal processing systems require very high speed computation,
multiple modes of operation, and high reliability, all within strict size, weight, and power
constraints. Demands for future applications that seek to improve detection of low signal-to-
noise ratio targets and to improve resistivity to jamming or interference continue to drive the
search for greater performance within even tighter constraints. Examples of these
applications are avionics systems, anti-submarine warfare systems, and integrated radar and
electronic warfare suites. As these systems grow in complexity and their procurement
becomes increasingly costly, programmable processors that can be used in a wide range of
systems are being viewed as a way to reduce nonrecurring engineering costs and ensure the
flexibility needed to meet evolving requirements. However, they represent a departure from
traditional signal processor design, in which the tendency has been to build application-
specific hardware for each individual system. The challenge in the design and use of a
programmable parallel processor is to optimize performance to a level comparable with that
previously attained only by application-specific hardware.

Recent advances in parallel processing technology have made it increasingly practical
to build programmable parallel signal processors that meet the performance and physical
requirements of embedded signal processing systems. In fact, such processors have been
built and are being introduced in current procurements. Details of their architectures vary,
and the skills and tools needed to program these processors are highly specialized. The
objective of the Parallel Signal Processing project is to develop general techniques that make
it easier to understand, evaluate, and design programmable parallel signal processor
architectures. These techniques would be used to provide insight on current procurement
decisions as well as to develop next-generation programmable parallel signal processor
design concepts. The project consists of four tasks: 1) parallelism analysis of signal
processing algorithms. 2) development of formal methods for mapping algorithms onto
parallel signal processors, 3) performance measurement of parallel signal processor systems,
and 4) system-level performance modeling of parallel signal processors. This report
describes the results of the first year's activities on the performance measurement task. The
other three activities are documented in separate reports [1,2,3].

Techniques for measturing the capability of a computer's performance have long been
important to the development and use of computers. Such measurements gN,,, c u'. s-r
information about how well a particular machine can perform a class of problems. They can
also be used by the system developer to identify a particular weakness or strength in the
system, or to quantify the contribution that a particular aspect of the system architecture
makes to the system performance. Measurement techniques have come to be called
benchmarks because the most commonly used measurement method has been to apply a well
defined and commonly accepted task or task set to a system and to measure the time the
system takes to complete it. This provides a "benchmark" by which to compare one system
against another.

Methods developed to measure the performance of conventional computer systems
have limited applicability to the class of computers that have been developed recently to
perform real-time digital signal processing tasks. Benchmarks such as Whetstones or
Dhrystones may reveal how fast one processing element of the system can perform floating
point arithmetic operations, but it sheds little light on more important issues for these
systems. Those issues include: 1) whether the system can meet the real-time constraints of a
given application running in continuous operation, 2) to what degree is parallelism in the
system providing speed-up to the problem computation, and 3) whether the system data
transfer resources are adequate to handle the requirements of the application and, if so, are
those resources efficiently utilized.

The uniprocessor benchmarks are inadequate because the standard computation model
by which single processor systems are understood and measured does not fully describe a
multi-processor system, where more than one thread of instructions is being executed at a
time. The ability of a single measure to predict an application performance depends on how
the application is executed on the system. A generally applied multipronressor programming
model is needed to find measures that will predict how an application will perform on
different architectures.

In a thoughtful paper on benchmarking parallel processor systems, G. Lyon explains
that in the absence of such a model, there is a spectrum of approaches to system measurement
[4]. There is on one end the application of a large representative program to the system. This
approach, if the program is successfully applied to the system, can provide information on
the structural strengths of the system in relation to the application being used. It may fail,
however, to pinpoint system weaknesses (that may pertain to the function of a different
algorithm). It is also very time consuming to apply a complete program to each system under
measure due to the absence of a high level linguage common to any two systems. On the
other end of the spectrum, specific metrics may be derived by exercising individual elements
of the system, s,,ch as, the speed of multiply and accumulate operations on one processing
element. This approach provides clear information on the weaknesses of specific elements of
the system, but there is currently no method to extrapolate the measures to predict high end
system performance.

A general goal of system measurement is to find program modules with the highest
levei of gencra!ity to compare against other existing systems and applications. The Parallel
Signal Processing project seeks, as a long term goal, to improve generally applicable
programming models to help accomplish this. A method is used in the work described here
that combines aspects of both ends of the spectrum that G. Lyon presents. It is considered a
first step in the process of seeking an inN'r';ved programming model to be used for
benchmarking parallel signal processing systems.

In the current state-of-the-art, the question of how to develop and present a useful set of
measures to describe high performance systems remains open. The viewpoint taken in this
report is based on the premise that current methods of performance analysis require
substantial hands-on experience on a system to be able to characterize it to a useful degree.
Our work, therefore, began with choosing a system to which we would have free access. The
work described here applies system measurements to our first target system, using some
typical radar processing algorithms for measuring performance.

2

The Comnme . Signal Processor (CSP) was chosen as the first system on which to begin
our work. It i. . high performance modular multiprocessor Digital Signal Processor system
designed and built by IBM under contract with the U. S. Air Force. The system meets the
needs of our work in a number of ways. The most important is that it is typical of the class of
reat-time programmable systems that we are investigating, as described in section 2.3.
i;urthermore, at the time we began, the system included a complete usable set of both
hardware and software. The software includes a full detail system level behavioral simulator,
by which we could conduct our tests over an extended period at MITRE. This gave us the
time to learn the system programming language, develop measurement applications, apply
them to the system, and analyze results in an iterative process. We were also encouraged and
assisted by the extensive cooperation from IBM through the loan of necessary software
modules and technical support. This paper presents the results of our measurement of the
performance of the IBM CSP.

The work is described in four sections. The first section describes measures of interest
and provides definitions and a framework within which to view system measures. The next
section describes the architecture of the CSP at a high level and the work that was performed
on the CSP to measure system performance. This includes the system resources and facilities
required to do the work and a description of the process of software development. The next
section contains results of the system measurements, along with the method used for
obtaining the results. A number of details of the system operation are described and system
performance numbers are given. These results are then used as the basis for a general
evaluation of the system, with a discussion of its strengths and weaknesses in processing
selected applications. The conclusion contains a discussion of issues related to the process of
benchmarldng in general and lessons learned from work performed on the Common Signal
Processor.

3

SECTION 2

DEFINITION OF PERFORMANCE MEASURES

2.1 PURPOSE OF PERFORMANCE MEASURES

Performance measures cover many aspects of the operation of a machine and vary from
subjective user preferences to objective clock cycle measures. They must be viewed in the
context of a purpose for developing the measures. Our motivations for quantifying measures
of performance for these systems include:

1. To choose a processor for performing a set of tasks or for use in a particular system
and judge a system's spare capacity for handling future tasks.

2. To tune the configuration of a processor system or the mapping of an application
onto that system to best perform a given application.

3. To examine the strengths and weaknesses of an architecture for the purposes of
improving future architecture designs.

4. To identify measures and methods of measuring that improve the process of
benchmarking by increasing the efficiency of the process and by adding insights to
the system under test and to DSP systems in general.

2.2 MEASUREMENT CONCEPTS

The exact definition of a performance metric often depends on the context. In this
section, we present measurement concepts and define terminology that will be used in this
report. The generic data transfer network shown in figure 1 is used to illustrate exact
measurement points; however, the metrics may be used for all system components. Some of
these metric definitions are fairly standard, such as throughput and latency [6,71. Others are
less commonly used, and may in fact be called by different names elsewhere.

Theoretical peak measure - This measure is the one most often cited in system marketing
literature and is derived from the physical characteristics of the system, such as clock cycle
time, bus width, buffer size, and processor instruction execution rate. It does not take into
account such constraints as context switching time, configuration change overhead or buffer
capacity limitations. It is used to describe the physical parameters of the system and is a
basis for the measure of efficiency. For example, peak throughput in figure 1 is derived from
the product of the clock speed and the data path width.

Abstract measure - This refers to the best case performance, within the context of the
operating system, but not in the context of an application. This means that control function
overhead is taken into account, but utilization and mapping constraints are not regarded. In
our example, for instance, the continuous rate of data transfer is measured with the

5

data input data output

3 buffeor buffeor

data transfer
bufrpath buffeor
bufferN bits wide

buffer CI path configuration bfe
controi

Figure 1. Generic Data Transfer Network Example

assumption that the data is constantly available at the input, there are no buffer overflows or
dao~ path conflicts, and the data is constantly accepted at the output.

The abstract measures can be compared to the peak measure for insight into system
efficiency and to the application measure for insight into utilization levels, as defined below.

Application based measure - This is the measure of the performance of a resource or set of
resources as the system is performing an actual application. This measure is correlated to a
particular application and provides information about the match of the application to the
system architecture, especially when it is compared to the abstract measures. This would
apply to our example as an application specified task with a fixed number of inputs, block
lengths and input rates, under the control of system program mechanisms.

Application computation cycle (or processing cycle) - This cycle refers to the repetitive
nature of DSP operations, and is dcfned as the time necessary to complete the processing on
a data block or vector that enters a functio'al element, or the system viewed as a whole. For
one element programmed to perform one subset of operations on the data, the computation
cycle is the time for it to complete a full set of computations that are repeated continuously.
In our example, the application cycle could be determined by the arrival of data from one
radar system dwell or one picture frame of a digital camnera.

Utilization (% time in use) - The aggregate time a resource or set of resources is being put to
use during the cycle (i.e., not available to perform another task) divided by the total time of
the cycle, expressed as a percentage. This metric is useful particularly for measuring the

6

effectiveness of resource allocation for an application and for judging the need to add more
resources to the system to gain higher performance. The utilization measure applies in out
example to the buffers as the average of space filled with incoming data and to the transfer
path as the percentage time the data transfer path is occupied with transferring data.

Throughput - This measure may apply to a single system element, group of elements, or the
system as a whole. It is defined as the amount of data to move through or to be processed per
unit time. Throughput is most commonly used to describe computation speed. This
definition includes other types of data movement as well, reflecting the concern in digital
signal processing applications for the sustained movement of data through the system. For
instance, in our example, the throughput is the sustained rate at which data arrives at the
combined outputs.

Operating speed - The throughput while the device is in use. This can be derived by dividing
the throughput by the utilization. In our example, for instance, this is the rate at which data is
transferred over the data path only while the path is actually operating and does not include
time that it is waiting for data to arrive at the transfer point or setting up the transfer path.

Total efficiency - The throughput, divided by the theoretical peak throughput, expressed as a
percentage. This measure reflects how well the application structure matches the system
architecture or the ability of the system to fully utilize the system components. In our
example, efficiency reflects the percentage of time that the data transfer path is in full
operation performing a data transfer.

Operating efficiency - The operating speed divided by the peak throughput, expressed as a
percentage. This measure is useful for judging the operation of a particular system element,
rather than overall system performance. A comparison of operating efficiency with total
efficiency can be used to identify performance bottlenecks or potential for the system to
accommodate larger applications.

The distinction between total efficiency and operating efficiency may be important and
subtle. For instance, data arriving at a data transfer network at a rate much slower than the
transfer bandwidth of the network must be buffered at the input if the full bandwidth of the
transfer path is to be used. If the buffer space is not adequate, the operating efficiency of the
transfer path is degraded. On the other hand, if buffer space is adequate, the data may be
transferred in bursts, leading to higher operating efficiency, but not higher total efficiency.
Differences in the two measures may identify poor system utilization or spare system
capacity.

Latency - This measure applies to a single system element or group of elements and is
defined as the amount of time between the moment the first datum in a block enters the
element and the moment the first datum from that block comes out of the element. In the
data transfer example, latency is the time between the arrival of a word at the input and
arrival of the same word at the output. This is to be distinguished from throughput, which is
the rate at which the words arrive at the output. Additional buffer capacity may help increase
the network throughput by allowing the transfer path to operate more at full speed, but with
an increase in the latency.

7

2.3 TARGET CLASS OF PROCESSORS

Our measures are focused on a particular class of machines. The target class is defined
as real-time parallel digital signal processor systems and is characterized and restricted by the
following aspects:

1. Programmability

Software to implement signal processing functions and system control is generally
written on more than one level, usually distributed between data flow and computation, and
sometimes computation is distributed between high-level code and macro code. It is possible
that this will be less so as software development tools become more sophisticated, but is
currently an important characteristic with respect to performance measures.

2. Real-time operation

During operation, results are calculated on data that arrives as a continuous stream and
flows through in sections (on blocks of data) that are independent of each other. Operations
are generally repetitive for each of the blocks and final outputs are not stored.

3. Dedicated processing

The processing being performed at a given time is for a single application, i.e., there is

no time sharing between applications. This restriction does not exclude the performance of
multiple tasks in one application.

4. Modular

The architecture is designed to accommodate a variable number of functional elements
of the system, usually including processing elements, I/O channels, and memory elements.
This makes some performance measures dependent upon the configuration.

2.4 MEASURES OF PERFORMANCE

Measuring multiple processor real-time digital signal processing systems presents two
problems not encountered in the measurement of uniprocessor general purpose systems. The
first, which applies to most multiprocessor systems, is that each system has a unique program
execution model. There are many variations in the size and structure of both instruction and
data memory space and the interconnections between processors. This affects the task
granularity of the application implementation and execution sequence of the tasks.
The second, which applies more to systems specialized in digital signal processing, is that
there is not a single method for software development. Systems are usually programmed on
multiple levels, with processing elements programmed with the lowest level of code, task
coordination programmed at a higher level, and application control programmed at the
highest level. The consequence of these variations is that a measure of the execution of an
application or any set of tasks on one system may not be a valid measure on another system.

8

Providing some insight into this problem is a long term goal of the system measurement
work described in this paper. The initial approach to system measurement which is described
here is to divide the measurements on each system into three parts; theoretical peak, abstract
operation, and application execution, as defined previously in section 2. Comparison of these
measures provides valuable information about how an application is performing compared to
its ideal performance (abstract operation) and to the full potential of the system hardware
(peak operation). These results can be used to judge the suitability of a system to perform
particular functions and particular applications as well as how well the system is being
programmed and its potential to execute applications with similar structures. The application
of this approach and the method of presentation of results is outlined in the following section.

2.4.1. Peak Measures

In this report peak measures are presented for each element of the system. These
include a processing element, external I/O device, a global memory resource, and an internal
data transfer resource. The architecture of each element is described on a high level. This is
included with the performance numbers because peak measures are in essence a description
of the physical structure of the elements. With the architectural features as a reference, the
elements are described with performance numbers. Table 1 shows the format with which the
measures are to be presented and lists the architecture elements and the measures associated
with them.

2.4.2. Abstract Measures

Abstract measures are taken while the system is in operation under an artificially ideal
mapping of functions to system elements. This is accomplished by programming each of the
system elements to perform a single task at maximum possible utilization, without the need
for synchronization or coordination of tasks.

By using the simplest control structure available to perform an operation such as a data
transfer or an arithmetic computation, the abstract measurement provides a best case usage
for the element against which to judge both the system control mechanisms and the
application performance potential. If the abstract measure, for instance, is compared to the
peak measure of the component, it indicates the cost of the system control mechanisms and
gives a maximum measure beyond which the user cannot expect the application to perform.
If the abstract measure is compared to the same measure in an application, it indicates the
degree of success the application attains in using the system resources.

9

I

Table 1. Peak Measures Presentation Format

System Element Processing Element External 1/0 Global Memory Data Interconnect

Total peak
operation

Single operation rate

Data storage
capacity _ _ _ _ _ _ _ _ _ _ _ _

Instruction storage
capacity

Simultaneous
functions

Word width

Maximum number
of system elements

The presentation of abstract measurements comes in two parts. The first is the
operating overhead measurements, including data transfer times and task scheduling
overhead. These numbers are presented with operating time lines, to help define the time
intervals being measured.

The second is the throughput performance measures. The measures must be prefaced
by a description of both the configuration of the system under test and the operations being
applied to the system for measurement. The operations must be described in sufficient detail
to understand the computations that are performed and on which element they are being
performed. The timing intervals and the number of arithmetic operations per processing
cycle must also be included. These numbers are presented in reference to the introductory
description of the operations applied to the system. It includes for each operation under test
the computation type, the number of arithmetic operations performed per cycle, the total
throughput, the time in use, the operating speed, and operating efficiency.

The measures for data transfers and scheduling overhead are as follows.

Data transfer from one element to another:

Path set-up time - The time to configure the physical data path

Data network transfer rate - The speed of the transfer while the transfer is in progress

10

Aggregate point-to-point transfer rate - Total functional element to functional element
transfer mode

Number of simultaneous transfer paths - The number of transfers occurring
between all system elements at a given time

Total transfer rate - The sum of all simultaneous aggregate point-to-point transfer
rates

Scheduling overhead:

Task-to-task schedule time - Time from task I completion to task 2 start-up, where
execution of task 2 depends on completion of task I

Other task schedule time - Such as function schedule time and data network blocking

Processing element utilization - The percentage of time the processing elements are
operating

2.4.3. Application Based Measures

The application based measures are used to provide a measure of the system
performance under real operating conditions. The value of each measure is limited in that it
applies only to the application under test. However, comparing results with abstract
measures and for several alternative mappings of the application to the architecture,
important information about the effectiveness of the software development tools, mapping of
applications to the system, and operating system efficiency can be learned.

Results of application based measurement must be prefaced with a description of the
software development tools for programming the system and the application that is being
programmed. The application should be chosen to be typical of those that are of interest to
the target user community. The mapping of application functions to the system hardware
must also be described. By demonstrating alternate mappings, the utility of the software
development tools and the flexibility of the system control mechanisms are evaluated. The
results are presented in the same format as the abstract results.

11

SECTION 3

COMMON SIGNAL PROCESSOR SYSTEM DESCRIPTION

3.1 INTRODUCTION

The Common Signal Processor (CSP) is a modular programmable digital signal
processor developed by IBM Federal Sector Division to perform a wide range of high
throughput real-time processing tasks, particularly radar signal processing. The processor fits
the model of processors that are the target of this performance measurement investigation.
To study performance of the system, the project obtained an agreement with IBM whereby
the necessary equipment and support would be provided to MITRE by IBM. This section
contains an overview description of the CSP architecture and its software development tools,
a specification of the elements of the software development tools that were used to perform
benchmarks, and a short scenario of the software development process for the CSP that was
used to measure the system performance.

3.2 CSP ARCHITECTURE

The CSP architecture is partitioned into a core set of control and interface support
modules, a set of functional element modules, and a set of support modules, as illustrated in
figure 2 [7]. The support modules coordinate the functional element modules and support the
transfer of data between them. Included with these is the Element Supervisor Unit (ESU) and
the Data Network Element (DNE). The DNE is the building block for the Data Network
(DN), which provides for data transfers between functional elements. The Local Operating
System (LOS) residing on the ESU controls the functional elements and coordinates task
assignment among them. Each ESU may control up to six functional elements.

Functional elements are specialized for the tasks of data storage, data processing, high
speed I/O, and preprocessing. Modules that comprise current configurations of the CSP are
the Floating Point Processing Element (FPPE), the Global Memory (GM), and the Sensor
Interface (SI). The CSP is designed, however, as an open architecture and could
accommodate modules to perform vector processing, specific preprocessing, or any
specialized task required by new applications. For example, IBM is currently developing a
Vector Processing Element with higher throughput vector processing. A brief description of
the FPPE, GM, and DNE architectures is provided in section 4 along with their peak
performance measures.

The set of support modules provides auxiliary functions to the system, including system
I/O, user console interface, and general purpose computing. Application command programs
are executed by General Purpose Computer (GPC) modules. They perform CSP processing
mode control, generate sensor control parameters, and communicate with external systems.
The system can be configured to match the requirements of the application, thus avoiding
unneeded overhead and system cost.

13

ESU LOS ESU LOS ESU LOS General Purpose

"EsU -"-" Computers (GPC)EU ESU I ESU

Video -~SI FPPE GM FPPE GM FPPE
Network

175

DataNet ork DN)175

Sensor SI FPPE GM FP GM FPPE
ESU ESU ESU

ESU LOS ESU LOS ESU LOS

PI Bus & TM Bus & Clocks

FPPEs - 150 MFLOPS peak pertormance
Global Memory- 4 MBytes storage
Data Network - 25 MHz, 32 bit data paths

Figure 2. Common Signal Processor Architecture High Level
Block Diagram (Courtesy of IBM)

The system execution model is shown in figure 3. The figure depicts a data flow graph,
which is used to describe all signal processing computations in the CSP. In this graph, a data
task is represented by a circle and involves data movement, i.e., computation or 1/0.
Between each task, data is stored in a storage object, which is represented by a box. The
system execution model allows multiple tasks to be performed in parallel on data from one
storage object and requires that all tasks operating on data from that object be scheduled
simultaneously. All program specification for data computations is in the form of these data
flow graphs.

14

inu storage prcssn storage output'

takobject takobject task

Figure 3. CSP Data Flow Graph System Operation Model

A data flow graph is executed by the system at a coarse grain level in an event driven
fashion as depicted in figure 4 [5]. In the scenario shown in the figure, data arrives at a
constant rate at the Sensor Interface element (SI). Data is transferred from the SI to Global
Memory (GM) A when two conditions have been reached: the buffer threshold in the SI is
reached, and space is available in GM A. After the last word of the block has been
transferred, a produce signal is sent to GM A, signifying that the transfer is complete. The
GM updates its data pointer and sends a read enable signal, signifying that data is available,
to the down stream Floating Point Processing Element (FPPE). When data is available and
the write enable signal has been received by the FPPE, signifying that space to write the
computed results is available on GM C, the computation task is scheduled. In terms of the
graph execution, the reading of a block of data from GM A, performing the data computation
task on the FPPE, and writing results to GM C down stream is one event. At the completion
of this event, the produce and consume signals are sent to the receiving and sending storage
objects, GM C and GM A, respectively, causing them to update the data pointers. The
storage elements may then generate new write enable signals to allow the cycle to repeat
itself.

15

Data Network

Write A Data Read A Data Write C Data
2 5

./0 Memory PE Memory

Sensor Data Data
Date . AP e A C

. ~ Storage Storage
V.

_ Proc.

P - Bus

:~~CL ~CLCTL TL TL

Sensor Global Floating Point (GM)
"l~e,4ae Memory Processor

Element (SI) Elemeat (GM) Element (FPPE)

ESU ESU ES ESU

(space available) (data available) (space available)
Write A Enable RedAEal ,WieCEnable

Produce A Data tConsumse A Data Produce C Data
3 I _ _ _ _ _ _ _

PI - Bus

Figure 4. Data Flow Event Driven Execution Mechanism

3.3 THE CSP SOFTWARE DEVELOPMENT TOOLS

There are three levels of software development on the CSP, as depicted in figure 5.
Each level of programming represents a different set of control functions in the system.
Application Command Programs control the system 1/0, data processing, and some high
level aspects of the signal processing task allocation. Specific processing modes are
programmed from a data flow graph description of the application, denoted as CSP graphs,
that specifies the functions of the Element Supervisor Units. Computation tasks are defined
by the CSP primitives and execute on the Functional Elements. They consist of macro
program strings that are programmed at a microcode level.

16

External System Buses
I ii

IEEE-488 User Bus Subsystem
Console Interface ManagerInterfcePosor

RS-232 Interface Adapter (750A ApplicationProcessor -Command
P1-Bus and TM-Bus Programs

Element Element Element
Supervisor Supervisor Supervisor CSP GraphsUnit 'ýr it Unit

High-Speed
Data I/O Eement Control

Buses

Functional Functional Functional Functional Functional Functional 1CSPElement Element Element 11Element Element 11Element JPrimitives
DNI N I I I

Data Network

Figure 5. CSP System Software

The set of software development tools used to develop CSP software is shown in
figure 6. On-line allocation of system resources and coordination of graph execution is
controlled by the Subsystem Manager running under the Local Operating System, and
programmed with a Command Program in the Ada programming language. The Element
Supervisor Units control the operation of the FPPEs and other functional elements and are
programmed with the Graph Program Preparation tools. The System Level Simulator is
available to assist in developing effective data flow graphs. The FPPE computations are
specified with individual FPPE macros, which are written in microcode with the assistance of
the FPPE micro assembler and simulator and are stored in a macro library. The macros
include data buffer specifications and execution time information required by the simulator
and complete FPPE micro instructions. Micro instructions are incorporated into the
executable graph binary image by the Graph Linker. The three levels of programming are
combined by the System Build component, which creates an executable binary load image of
the application that combines and coordinates the three levels of operation of the full system.
IBM loaned to MITRE the tools required to execute a data flow graph on the System Level
Simulator. These are indicated in figure 6 with a stipple pattern, and include the Graph
Translator, Simulator, and the library of FPPE macro files.

17

Command program preparation

control processor comlPilOr/sotaelnr
source code (Ada) assembler llnker

Graph] L' {program preparation Graph/ .CS

graph specification lne

(graph notation ar ' 0-r Graph
language) image image

Micro program preparation macr

processing element FPPE micro FPPE micro . -.
source (micro code) Assembler simulator macrosoure (mcro ode)attributes

f fHes
at MITRE

Figure 6. CSP Software Development Tools

3.4 DEVELOPING CSP SOFTWARE

Programming a CSP application begins with the specification of a data flow diagram,
such as the generic example shown in figure 3. The user further specifies the signal
processing tasks of the application and defines them in a graph description language to the
Graph Translator.

Each task is ýhe complete processing on one FPPE that is executed on one set of data.
In order to describe the task in the graph description language, the programmer must specify
the task at the level of detail shown in the example in figure 7. The figure shows the access
to Global Memory, the exact placement of the data in the local memory, and the computation
macros to be executed. Issues such as overlapping input and output buffers and computation
times are dealt with at this level. From this specification, the programmer can make a good

18

estimation of task completion time and map the tasks to the system resources according to the
computation and data storage capacity of the FPPEs and the GMs.

The Graph Translator translates the graph and its mapping to a series of events to be
executed by the system. This event sequence is the input to the System Level Simulator that
simulates sysiem performance and generates detailed timing information to reflect the
expected system execution of the graph.

storage object local store convert to floating local store
storage__obect _ocalstore_ point

read by
column

lOx 1600 4 times FXFL
fixed comptex

'400Wx0 ... A00,x,10, ,

clutter cancel filter / local store storage object

.. . . .I " float complex

coefficients f

column

Timing estimates:
4 x [400 x 40 + 13 x 400 x 10] - 272,016 cycle (10.880 ms)

Figure 7. Task Specification for the Graph Translator

Writing computation macros is a separate development process. An extensive library of
previously written and tested FPPE macros exists, including functions such as an N-point
FFT or a correlation. If additional macros are needed, they are written in microcode and
translated to machine code by the FPPE micro assembler. Routines are tested on a detailed
hardware model of the Floating Point Processing Element (FPPE) that simulates data results
and precise timing characteristics. The results of this simulation are used by the System
Level Simulator to provide an accurate simulation of the graph execution of the application.

The third section of software development is writing the Application Command
Program. This aspect of the software controls the system interface modules and data

19

dependent control functions. Once the FPPE macros and graph design have been fully tested
on the simulators, the Application Command Program is used to develop the complete
executable program for real-time on-line execution.

3.5 DEVELOPING BENCHMARKS USING THE CSP TOOLS

The benchmarking software development has been conducted at MITRE, Bedford,
without the system hardware. As stated above, IBM loaned to MITRE the elements of the
software development system required to make extensive software development and system
performance characterization possible. The System Level Simulator executes a behavioral
simulation of the system at the event level with the execution specified with the Graph
Translator graph image.

The Graph Translator is written in a behavioral simulation language called Simscript. It
runs on a VAX VMS system and requires the Simscript runtime library. IBM obtained
permission from CACI, the company that licenses Simscript, to include the library with its
tool set at no extra cost. They also included a graphical time line display tool (TML) for
examining the simulator output. TML runs on a PC, and includes a data translation filter to
give it compatibility with the VAX VMS.

The Graph Translator comes with an extensive library of FPPE macros that has been
developed by IBM. The macros perform such operations as format conversion, filtering,
threshold comparison, FFTs, and other operations needed to construct radar processing
applications. Although the simulator does not actually execute the macros, it does depend
upon fully developed code for complete data I/O specification and the parameterized
performance equations. According to the IBM applications engineering staff, the average
macro takes four staff weeks for experienced staff to develop and would cost about $15,000
each if IBM were contracted to develop new macros. Due to the completeness of the existing
set of macros provided in the macro library, the benchmarking proceeded to test CSP
performance without the extensive work or expense of developing new macros.

A data flow graph is encoded in a graph description language. The Graph Translator
transforms the description file into a set of control specifications that form the basis for the
input to the System Level Simulator. The System Level Simulator simulates the execution of
the data flow graph and produces detailed information about the system performance.
Attributes and performance of the FPPE macros are described in detail to the simulator in a
set of attribute files. The attribute files contain performance information that has been
verified with physical system measurements and allow the simulator to reflect accurately the
performance of the FPPE computations.

The output of the simulator includes a detailed set of statistics describing the system
operation. Each event in the execution of the graph is listed in both time order and sorted by
functional element. Statistics are also provided on the execution times of the FPPEs and the
status of data storage in the Global Memories. Times are given to microsecond accuracy.
The time line display capability is very helpful to gain an understanding of the system
operation. TML displays the graph on the screen, including any or all of the functional
elements and zooms or pans to provide any level of resolution. It also shows task execution

20

and control signals. These graphical displays were used to find critical sequences and
durations, and the simulator file output was referenced for exact timing measures.

21

SECTION 4

RESULTS OF COMMON SIGNAL PROCESSOR PERFORMANCE
MEASUREMENT

4.1 INTRODUCTION

As outlined in section 2, measures of performance can be seen from three perspectives
and each makes its own contribution to understanding the system. This section is presented
in the format established in section 2, and describes the performance of the CSP. Some
practical considerations that were required to proceed with the work are given here as an
introduction, and the following three subsections present each of the three levels of
measurement that are described in section 2.

The first step of benchmarking the CSP was to install the Graph Translator and TML
tools, establish a working system and learn to operate it. Some support from IBM was
provided to help us learn to use the Graph Translator and associated tools and included a
three day course given by a CSP system expert. The course included extensive class notes
detailing system operation and use. The peak measures were compiled from the information
presented in the course, and provided a preliminary understanding of the system operation. A
realistic application was then programmed, and served as the vehicle for learning to use the
software tools. The application was programmed on the CSP by transcribing its data flow
description to the CSP graph notation language. The system simulation of this graph was
used for making application level measures of the system. A separate data flow graph was
then developed for abstract measures. These measures were optimized with the benefit of the
understanding of the system operation gained with the previous set of measures.

All processing element computation performance numbers presented here are given in
MFLOPS, and refer to the number of million adds, multiplies, or conversions from integer to
floating point numbers performed per second.

4.2 PEAK MEASURES

4.2.1 Processing Element

The FPPE is a micro-programmable signal processor with local storage for program
code and data. A functional block diagram of the FPPE is shown in figure 8 [5]. There are
two data buffers called Local Store A and Local Store B, both with connections to the Data
Network (DN), allowing the execution and input/output operations to overlap. A series of
FPPE macros may be stored in the Microstore and chained together to form a macro string
which operates on the data in local store. The FPPE contains two parallel pipelined data
paths, each with a multiplier, accumulator, and an ALU. Coefficients may be read from a
coefficient store or generated by a function generator capable of performing sine, cosine,
arctangent, square root, and reciprocal functions in two clock cycles. Table 2 provides the
peak performance parameters of each of the CSP functional elements and the data network.

23

Syvtwn &A uat Doa No'woA

Figre 8.FotnDPitPoes agEeeta

SK X 128 Comao Channel

In.Srence

The ~: Seso ILtefac (S)i ucinleeetdSigned exlctyfrth8rnfro

Local Store Tetami and r

irm2 rti data rates upto4 m3 T/0

iutht, the bfrin
M'.

A. L. U. A. L U.

Funcion • COO.
Gen. Siore

x. y

Figure 8. Floating Point Processing Element

4.2.2 Sensor Interface

The Sensor Interface (SI) is a functional element designed explicitly for the transfer of
data between the CSP and external data sources. The Sl, shown in figure 9 [5] , operates in
either point-to-point or local area network mode. The transmit and receive channels of the
interface are each capable of supporting data rates up to 400 megabits/second. Ile Local
Stores (LS) allow for reformatting of data before transmission. One LS is dedicated to each
input and output, and the third may augment the buffering for either the input or the output,
as required. Transfers across the Data Network are performed in blocks, as specified by
control signals from the ESU. Peak performance parameters are shown in table 2.

24

Data
Network

A System Input Output
Control

Data ChanneI VF Systm Control Sse oto
I J

Address
Generation

LS 0 LS 1 LS 2
4Kx34 4Kx34 4Kx34

Sensor Interface Data Network (SDN)

I I

Figure 9. Sensor Interface High-Level Block Diagram

4.2.3 Global Memory

Data storage within the system is provided by the Global Memory (GM) modules. The
structure of the GM is shown in figure 10 [5]. Processing elements or I/O modules under the
control of any ESU in the system may access the storage objects assigned to a GM via the
Data Network. Data storage is formatted in 32-bit words and an additional 8 bits for error
correction and detection. The module supports several addressing modes, which allow the
operating system to treat storage objects as either queues or buffers. A buffer type storage
object is an unstructured organization that is accessed by explicit reference to buffer offset
addresses. A queue type storage object is organized as a circular queue, where data is written
sequentially to the tail of the queue and read sequentially from the head of the queue. The
data is described in terms of a matrix, and, using the queue model, can be accessed as a linear
queue, as multiple queues, or as a matrix in comer turn or coordinate rotation modes. Global
memory peak performance parameters are given in table 2.

25

Control/
Address

Memory Array [Memory
(4 256K x 40 DRAMS)V Control

-. Data -- Address

Error
Detection/
Correction Segmentation

Data Memory
Channel Address
Interface Generation

System Bus Data
Network

Figure 10. Global Memory Functional Block Diagram

4.2.4 Data Network

The Data Network provides a high-speed data transfer mechanism between functional
elements, and is configured in either 16- or 32-bit wide paths. The size of the Data Network
depends on the number of Data Network Elements (DNE) used. A single Data Network
Element, made of eight switches, is shown in figure 11 [5]. Each dataline in the figure
represents 8 bits and the combination of Data Network Switches comprises a single DNE
with six 32-bit wide ports. The maximum network size is limited only by the physical
packaging constraints of the system backplane and a limit of 8 switching nodes in any one
data path between two functional elements. The number of simultaneous transfers possible
depends on the interconnection scheme chosen and the maximum number has yet to be fixed.
Routing of a path between two functional elements occurs for each data block transfer and is
based on a set of route addresses associated with a block header that contains one route
address per switching node in the path. Links in the network may be shared by multiple
paths, and are assigned at graph compilation time. Peak performance parameters are shown
in table 2.

26

-Data 'Data

FgNetwork Network E

4.2. System Configratio

- Dat Data L- Network Netw~oork -- witc~i !Switch!

TData i vDataNetwork A NetworkI--

wI tc
S w itc h 1 1

- Network Network

Figure 1 1. Data Network Element

4.2.5 System Configuration

The numbers in table 2 are representative of a realistic configuration on the largest

existing backplane (78 slots total). The actual configuration may be customized and future
packaging technology will allow larger systems to be integrated.

4.3 ABSTRACT MEASURES

Results presented in this section are based on system-level simulations of a CSP
configuration with 5 FPPEs, 4 GMs and 2 SIs. The simulator timing estimates have been
shown to be accurate by comparison with hardware performance times. The simulations are
derived from software code that is identical to code that would be prepared for running on the
system hardware.

Abstract measures are performed on the CSP with the data flow graph depicted in
figure 12. Each processing element in the 5 FPPE configuration was programmed to perform
a different computation task. The tasks are typical of those used in radar processing. The
graph represents one cycle of execution, and a node on a data flow graph represents the
processing to be performed on one FPPE during a cycle. At the end of each cycle the output
of each node serves as the input to the next node in the graph to be processed at the next
cycle. Each task is sized to match the graph cycle time in order to minimize scheduling wait
time. The application is artificial in the sense that the task sizes are determined by the time
available in the cycle rather than the requirements of the data. A real application would have
no such flexibility.

27

Table 2. Peak Measures of the CSP

System Element Processing Element External I1/ Global Memory Data Interconmect

Total tio 150 MFLOPS 400 Mbitcs/sec 1200 Mbytes/sec
operation__________ _______ ________ _____ ____

Single operation raw 25 MHz 12.5 MHz 25 MHz 25 MHz

Data storage 64 kbytes 48 kbytes 4 Mbytes none
capacity

Instruction storage 128 kbytes
capacity

Simultaieous 6 2 (in&out) 1 (read or write) 12 (estimated)
functions

Word width 8-64 bits 16-32 bits 16.64 bits 16-32 bits

*Maximum number
of system elements 12 4 8 8

*reflects largest configuration existing to date

The cycle time for the data flow graph in figure 12 was determined by the FFT task. It
is the largest possible FFT that can be executed with the available library macros, due to the
local memory size constraint of the FPPE. It is repeated six times in the task, to allow an
easily measurable amount of processing to be conducted during each cycle. The other tasks
were sized by adjusting the data set input size and the number of iterations to be performed in
one cycle, with an effort to use the largest possible input data set allowed by the internal
FPPE memory size. Each of the tasks are shown on the data flow graph with the function
name and its input parameters in the circles. Between tasks, the numbers under the arrows
show the number of times the tasks are repeated in one cycle by the size of the input data set
for each repetition.

The graph was entered to the Graph Translator in the graph specification language
according to the mapping to the system shown in figure 13. There are no complications to
the mapping because the graph was developed with this mapping as the model of execution.

28

4hodr59 point 63 point
inp~ut 4thrde complex FIR real FIR

C6 x3700 1I 1x2048 1 x ý496

6 xt 4019 F 7X49 antd

Typical radar computation tasks - sized to balance
computation time at each node

Figure 12. Abstract Measures Data Flow Graph

6~ xx3748

14.100 ms a 352,500 91Q2 04P* GM2
clock cycles FPPE 1

real FIR -6x49
FII x 4096 6 x 4096 •

""9 taps real 6 pcomplex
•1,O4,-W4 apt

94w GM 3 1 - GM 3

FPPE 2 FPPE 3

.. complex p 96 Bog magnitude

.. p V GM 4 .M%33 2 opl, GM 4

FPPE 4
FPPE 5

figure 13. Mapping of Abstract Measures Data Flow Graph to CSP

29

Simulator execution of the abstract measures flow graph results in a detailed set of time
stamps that represent system operation. This operation is displayed on time line graphs that
can be viewed at any level of detail to illustrate all aspects of the system execution. Figures
14 through 18 show key features of the abstract measures data flow graph execution. Figure
14 is the highest level view, and shows the initial set-up and four full cycles of graph
execution. Each horizontal line of the graph corresponds to one element of the system shown
in the application mapping in figure 13. Execution begins with data coming in at Sensor
Interface (SI) 1 which is illustrated in the timeline by a rectangle whose width represents the
time it takes for the input data to arrive. Between each task execution cycle, the data is
transferred to Global Memory. The low bars on the GM lines represent loading of data into
the memories, and the high bars represent unloading the data, as it is transferred to the next
FPPE task. Output begins at SI 2 after five cycles, when the PE 5 executes for the first time.

S 2 n i I
$l 11 HI IDI]INI1 IfIfIf1 11IfI1If! IfIfI UIfIf] [1 lh~lflflh!!IflI flI HI HlIl

GM4 ln i lJ ,nInd i nnir in 1n n iAn i n i

GM3 A0...lDiG 0Ii 1 01 0 MflOlR lo l 11 II11I J
GM2 a ii mn u .nn n a n ni, nan Ji unon nanunA n i nin A n i nmn.

GM 1 L... ,AI 1.IIJIU. ,l.,JJl J, ,II,, A aIM11 IJ 1J.lJ1 Jl~hllJ1A I
PE 5 MUE= ýlUHUBl f l
PE4 l]EM EMflEN N•DE. EUD

PE3 mm mmI1 mm il 1
PE2 FT71 IV7 I1" = IT1I FIT1 IF'1 FT1
PE1 fIIIlT fllTllli lllfllllllll l rilllllllrl

16 32 48 64 80 96 112

Time (msec)

Figure 14. Maximum Throughput Execution Timeline

30

4.3.1 Data Transfer

Viewing this graph in more detail reveals more about the task scheduling overhead and
data transfer times. Figure 15 focuses on the events between the completion of a task on
FPPE 4 (PE 4 on the graph) and the beginning of a subsequent task on FPPE 5 (PE 5). At the
completion of the last subtask on FPPE 4, the DN connection is established and the data is
transferred to the GM. The GM overhead time includes reading control signals, updating
data pointers, and sending ready signals to the ESU. When the ESU schedules the next task,
the data transfer begins to load FPPE 5. Critical times shown in table 3 are labeled on the
graph.

)(>-,- Control Signals

IGM Overhead

GM 4___ _

ITransfer

I Complete I Execute
I.-- to - Load

PES5 ! Schedule _ _Subtask Transfer

Execuion lu- Total TrnfrTime
DN Connectingg ' Schedule

to
Execute U.I I Execute

PE4 UnloadPE4-
p I a I , I , 1 # ! a I I I ,

68 68.5 69 69.5
Time (msec)

Figure 15. Task Scheduling and Intertask Data Transfers

31

Table 3. Data Network Measures

Path set-up (DN connecting) 2-3 pgsec
Data network transfer rate 24.5 MHz

___(784 Mbits/sec)

Storage object unload to load interval 479 jitsec

(GM overhead) 479 _ _ _ _ _

"Aggregate point-to-point transfer rate 7.1 MHz
(functional element to functional element)

Number of simultaneous transfer paths 5
Total transfer rate 35.5 MHz

(maximum number of simultaneous paths was not used)

The graph execution in figure 14 displays no access conflicts at the storage object. It is
important to note that storage objects may be a shared resource for some applications and
configurations. In such a case, processing element task scheduling delays can result from
contention for access to storage object data because there is only one storage object port, to
the data network. To illustrate this problem, the task mapping shown in figure 13 was
changed, so that tasks on PE1, PE2, and PE5 all access GM4 for data input. The resulting
execution of this modified mapping is shown in the timeline in figure 16. The time delay in
the sixth task execution of PE1 shows that contention for data from GM4 has caused a
scheduling delay.

The graph also illustrates how the delay is compounded by the scheduling requirement
for an output data space available signal. The task on PE3 does not access GM4, but is
delayed on its sixth execution because the consume signal from the task on PE4 is required
before the space available signal from GM3 is generated. This example illustrates how
inflexibility of the scheduling requirements must be accommodated by ample memory
resources in the system configuration and data flow graph mapping, and how the data transfer
mechanisms depend on the Global Memory resource.

32

PE 5 Creates Contention at GM 4

SI 2 _ _ _ __ rl_111__Inl
S~l I I1 I In 1 1P lIll0 10 1 1111111101 11 l I III I IlIln 0l1lnl

GM3 ARM ,010]Ill] ,l 1 [•oIl go I0 pop
GM 2,, ,.m m

GM 1 . 0IUI 1 HuED

PE 5 MMM3mmM
PE4 IN I

PE 3 I, 77 F--- I II II .I i•

PE2 1 = III__II I_ ____--__I I I _---F____I-
PEI 1lllllllllllllllllllll Iffu lff I 111 I ' 'i' ,FTT

16 32 48 64 80 I 96 112

Time (msec) PE 3 Waits for
PE 4 to

1st Schedule Complete
Delay for Input

Figure 16. Memory Contention Problems Example

4.3.2 Scheduling Overhead

Figures 17 and 18 focus on the details of task execution from figure 14. A computation
task begins with a schedule signal from the ESU. This is followed by loading of data from
the storage object to the processing element. Each task consists ot subtasics that are executed
repeatedly for a prescribed number of times on a new set of data from the storage element,
and each subtask is followed by unloading of result data to a storage object. Each subtask
consists of a string of macros, and is constructed to operate on data from the processing
element's internal data buffer.

Figure 17 displays one full cycle of task execution (on PE 4), including the task
scheduling signals, the input and output of data to the GMs (GM 3 and GM 4), and initiation
of the next task in the processing chain (PE 5). The times given in table 4 are labeled on the
two graphs. An interesting feature of the task execution is shown more explicitly in figure
18, which is a more detailed look at the subtask execution. The subtask scheduling overhead
does not depend on the input and output of data, because I/O takes place during subtask
execution. This is made possible by the use of the dual local store buffers on the FPPE.

33

Write Enable
GM4 -Read Enable Fl

GME4 F____

GM1I F

PE5 Input 2 Output i
IIlSubtask 1 IInput 3

PE 14pu1

15,6 60 64 68 ' '

Schedule Task Comp lete I Time (msec)!

• Schedule to Execute Complete to Schedule-.

I I
I

Task Cycle Time

Figure 17. One Complete Task Execution

34

GM41

GM3 1
*- L Subtask Scheduling Overhead

DN Execute
Connecting Load

PE 4 Unload

I , . I , , 1 , ,. I , I , , Ii ,

896 1024 1152 1280 1408 1536 1664

Time (uisec)

Subtask to Subtask Execution Time - 20 lasec

Figure 18. Subtask Scheduling

Table 4. Scheduling Overhead Times

Schedule to execute 393 - 397 Igsec

Complete (task 1) to schedule (task 2) 287 - 458 tsec

Subtask complete to next subtask execute 20 ±sec
(subtask scheduling overhead)

Processing element utilization 86_-_88%

35

4.3.3 Processing Element Computation Rate

The computation rates summary presented in table 5 draws on information from each of
the graph details shown above. As is shown, the rates obtained varied according to the task
being performed. The second column in the chart is the total number of floating point
operations performed during the computation cycle. The third column is the total
computation throughput attained in the cycle, derived by dividing the number of operations
by the cycle time. The next column gives the total time in use as a percentage. This is given
to describe the system's scheduling efficiency and is derived by the total time spent in task
execution divided by the cycle time. The next column is the operating speed, and shows
throughput of the processing element while it is actually executing a computational task and
is given by the throughput divided by the percent time in use. The last column, operating
efficiency, compares the throughput to the best possible device usage by dividing the
operating speed by the peak throughput.

Table 5. Processing Element Abstract Performance

Total Operating
Number of Throughput Speed Operating

Task Operations MFLOPS Time in Use MFLOPS Efficiency

IIR 942,600 66.8 89% 75 50%

Complex FIR 938,008 66.6 90% 74 49%

Real FIR 1,014,804 72 88% 82 55%

4K FFT 1.474,560 104.6 87% 120 80%

ComplexMagnitude 909,312 64.5 90% 71.6 48%

Thresholding 162,960 11.3 95% 11.9 8%

36

The abstract performance table reveals a number of features of the CSP system. Most
functions can operate at a sustained rate of around 70 MFLOPS. The notable exceptions to
this are the FFT, which is able to take advantage of the dual pipeline structure of the FPPE
architecture, and the thresholding, which consists of a large percentage of branch instructions
and cannot make effective use of the pipeline structure. The graph execution requirement for
data to pass through the GM between task execution shows in the "time in use" column,
where even under the best of conditions the time in use remains under 90% in all cases but
one. An important point to these results is that they indicate that the system can scale
linearly with size, given a proper balance of functional elements. That means that the total
throughput could possibly be about 70 MFLOPS times the number of FPPEs in the system.

4.4 APPLICATION MEASURES

Application based measures are taken from the operation of a realistic application on
the system, and are used to gain information on how the system performs in practice. The
CSP was specifically designed for radar processing, and the FPS- 117 ground based radar
processing was chosen to represent a typical processing application. One radar processing
channel, based on the FPS-1 17 processing stream, is shown in figure 19, in the form of a data
flow graph. The computations performed are labeled in the circles representing tasks.
Between tasks, the arrows are labeled with the number of task iterations by the data set size
for each iteration.

input clutter cancellation pulse compression

1472z8 a B X1472 ff2linG, Si 4 ceecinSweighting adaveraging and dtcin

equalization CFAR output

Figure 19. FPS-1 17 Ground Based Radar - Single Channel Data Flow Graph

The simulation of the graph execution is set up to reflect the real-time requirements of
the system. The input data is a series of complex samples of the return signal from a
transmitted radar pulse being sampled at a rate of 1.25 MHz. For each pulse, there are 1,600

37

samples of range data. Ten pulses make up one coherent integration time (CIT) interval of
about 14 ms. Each datum arrives as one 32-bit word, representing the 16-bit fixed point real
and imaginary parts of a complex number. There are five stages of processing to be done on
the data: clutter cancellation, pulse compression, equalization, magnitude calculation, and
constant false alarm rate detection. Each stage is a task that is performed on different
processing elements and the stages are performed in parallel by pipelining the operations;
that is, the results of one stage of processing is fed in as the data source for the next stage of
processing.

Two alternative mappings of tasks to processors on the CSP were performed. The first,
depicted in figure 20, computes one CIT each processing cycle and the second, depicted in
figure 21, computes two CITs in each processing cycle. Time line displays of the simulation
results are shown in figures 22 and 23. The FIR task, split between FPPEs 2 and 3, is shown
being executed on the time line on the lines labeled PE 2 and PE 3. The magnitude and
thresholding tasks are combined on PE 4. The time line on the single cycle mapping shows
that FPPEs 2 and 3 are not fully utilized. The alternative double cycle mapping execution
shown in figure 23 executes the FIR task for one full CIT on one FPPE. This saves the
overhead of one GM access and frees up enough time in which to compute the magnitude
task on the same FPPE. This results in a higher utilization of FPPEs 2 and 3, and additional
available time for processing at FPPE 4. This time is not used, but is spare processing
capacity available for unforeseen requirements that was not available on the single cycle
mapping.

An important feature to note on the SI Out line of figure 23 is that the output latency
has been doubled. This results from an inflexibility in the task scheduling of the graph
execution. Although data is available for one task to start on FPPE 2 before FPPE 3, there is
no control mechanism for executing one before the other, because the data for each comes
from the same source.

The computation speed measurement summaries for the two mappings are presented in
tables 6 and 7, using the same format as table 5. The difference between the two tables, in
the Time in Use column, reflects the difference in utilization for the FIR task that is discussed
above. In accordance with our three level measurement benchmark method, comparison of
these tables with table 5, which reflects the abstract measures, reveals some characteristics of
the system performance. The operating efficiency of the HIR task is 21.5%, far below the
50% figure of the abstract measure. This points out the inefficiency of using library macros
that are generalized to a range of computation parameters. In this case, the IIR being
performed is second order, while the macro is written to perform as much as a fourth order
IIR operation. To improve the operating efficiency of this task, a specialized macro would be
needed. In another point of interest, the FIR task registers 54% to 57% operating efficiency,
which is higher than the abstract measure of the complex FIR task. This was obtained by
altering the FIR algorithm to use FFT macros to perform the convolution in the frequency
domain, and taking advantage of the high efficiency with which the FPPE performs the FFT.
On the other hand, the low operating efficiency of the CFAR task is expected, because of the
contribution from the threshold processing, which measured very low efficiency as an
abstract measure. In addition to these observations, the time in use measures show that
obtaining the abstract levels of usage of the FPPE is difficult, and that 75% is in practice a
reasonable expectation.

38

input
l0 x 1600 conr -fixed to ... ore

per turn

14.28 ms =

357,000 FPPE I
clock cycles

FIR : FPPE2 2
, overlpehdin

n se w n 8 pmagnitude l

GM 3 :4 0 0 00O,0"0L40 ,

1,847,000 op. FPPE 4

corner window -1 set of

tunaeaig thresholding -Ow.~ n

FPPE 4

Figure 20. Single CIT/Cycle Mapping of 117 Processing to CSP 4 FPPE Configuration

39

input
20 x 1600 cmrfxdt

per 28.56ms -110 tun O blating point IS

28.56 ms - 357,000 clock ;4,' ; :i4ob bs.
cycles FPPE 1

*....................

FIR - . . . :FPPE 2
corer overlap cornertup Cmrn and save turn weighting - 8 pt FFT -magnitude..

corner windo

,opý=,WIP '~i00,oiFPPE 3

Figure 1. Douber C40,l Mappraing of11hroesholingtoCP4EECofurin

GM40

S I Out One CIT
First Output

Sn l" I II In! I Ij I 1 ! 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1l I1 n l 1 1

GM 4 I, ,I I, WA I, , I r 1 =I !, ,! t

GM 3GM2 3,i,, m~,,, Il,, I I l,,,,,,I hl,, I ,,,I I Il,,,,m

GM 1 ,Lll l , 111111 ll ll ILI, JIILIII, JLILILI I, JlI, lillI II

PE 4 mm OFF Eff Em E i El
Each CIT is Processed

PE3 on2PEs mm U m l EiUUU ll ifh h IM=PE • III!11111,lhllllh l UE I•IN Ififhifi fllllllllifl li!E111 Ill
PE2 2= s m I m

PE1 IIIIIil Iff!11 11f1111 [mI!1 O NII!1 Ii1ffi I!1fl 1
I , I . a , I , a , I *, a , I * a , I . I . I ,

16 32 48 64 80 96 112

Time (msec)

Figure 22. FPS- 117 Radar Application Single CIT/Cycle Mapping
First Output •

SI Out First CIT Second CIT

sI~,, • I H '! I tI I]ttIttf ttItI]I1I!IIIItttI

GM4

GM 3

PE 4 [fl[
SEach CIT is Processed on Separate PE's

PE 2

PE 1

PE 1 [I!!11111111111111 ITI I11111 111111 I!111111111111l' 11 -
I , I , , , I , , , I , , , ! , , * I , £ I I , , , I

16 32 48 64 80 96 112

Time (msec)

Figure 23. FPS- 117 Radar Application Double CIT/Cycle Mapping

41

Table 6. Processing Element Application Based Performance
Single Cycle Mapping

Total Operating
Number of Throughput Speed Operating

Task Operations MFLOPS Time in U MFLOPS Efficiency

IIR 400,000 28 86% 32.5 22%

FIR
(2 R 1,847,296 129.2 75.8% 170.4 57%

Equalization & 588,900 41 75.7% 54.4 36%
CFAR

Total 2,836,196 198.2 78.3% 257.3 43%

Table 7. Processing Element Application Based Performance
Double Cycle Mapping

Total Operating
Number of Throughput Speed Operating

Task Operations MFLOPS Time in Use MFLOPS Efficienc

IIR 800,000 28 86% 32.5 21.5%

FIR
Equalization 2,128,796 74.4 91% 81.8 54%

(each processor)

CFAR 614,800 21.2 42.8% 50 34.8%

Total 5,672,396 198.3 78% 256 42.6%

42

4.5 SOFTWARE DEVELOPMENT TIMES

Entering a data flow graph specification to the CSP Graph Translator requires a detailed
description of all data transfers, buffer accesses, and data type specifications. Data accesses
on the GM nimaat '. exactly comrdinated with the correspording acc-,:s c.. the FPPE. This is
done with a list of commands for each functional element, with each command requiring five
or six arguments. The compilation of the graph is a two step process. The first stage checks
for syntactic and semantic errors. The second stage checks for inconsistencies in the
specification of data transfers, such as the match between data sets and buffer sizes. The
compilation time is quite long, as shown in table 8. A user with some programming
experience can cut the time required for programming a graph significantly, but the graph
description process itself is inherently time consuming. Table 8 is based on my experience
with the software development tools running on a time-shared MicroVax workstation. The
numbers reflect an approximate average of times required for each step of the software
development process.

Table 8. Software Development Times

First time application development 3 months
Second time application development 3 weeks

Approximate Graph compilation time
- Using a time-shared MicroVax

stage 1 20 minutes
stage 2 35 minutes

simulation time 45 minutes

4.6 RESULTS ANALYSIS

The process of measuring the performance of the CSP has provided two levels of
information. The quantitative performance numbers presented in the previous sections
provide some understanding of the system, but apply only to particular application cases. To
gain a fuller understanding of the system, we draw from the experience of measuring the
performance of the system. This section of the report is based on judgements arrived at
during the trial and error process of developing applications on the system. Four aspects of
the system architecture are discussed here: the system execution model, inter-element data
transfers, processing elements, and software development.

4.6.1 System Execution Model

The CSP uses a static method of assigning tasks to FPPEs. Construction of the
application data flow graph specification includes specific hardware assignments and data
packet sizes. This method uses system control mechanisms that are significantly simpler

43

than those of a dynamic assignment method. One advantage to using a static assignment
constraint is that effective system simulation is possible. The CSP simulation capabiiit,, is of
great value in application development, especially in helping to tune system performance.
The static assignment method also helps keep task scheduling overhead low during
execution, but has the disadvantage of limiting system flexibility. It can also be a hindrance
when trying to minimize system latency. 'i his is a consideration, tor example, when a
number of tasks are waiting on the same data source. It may be the case that sufficient data is
available for one of the tasks to execute before the complete data set has arrived at the
storage object, but since only one data threshold may be specified for each storage object,
data from the source and space for the results must be available for all tasks before any are
scheduled to execute. This characteristic makes the system work best for applications with
coarse grained parallelism and tasks that can be evenly matched in terms of execution time.

4.6.2 Data Transfers

There are three steps involved in the transfer of data between processing elements: data
is passed from the source over the Data Network, stored in a Global Memory, and then
passed over the Data Network again to its destination. The Data Network has a very high
instantaneous bandwidth, with numerous paths able to run simultaneously at nearly 25 MHz
each. The network can also be expanded to meet system requirements as necessary. Access
to Global Memories can be performed at the data network speed. In addition, the Global
Memory has a powerful set of addressing modes, including comer turning, that can be used
without extra overhead. Storage of data in the Global Memories is, however, a required stage
between task executions. Therefore, the Data Network and the Global Memory must be
considered together as a data transfer resource, and as such, present two problems. System
overhead between memory accesses is far greater than the time taken to perform the data
transfers, and reduces the effective data transfer rate to one-third to one-fourth of the 25 MHz
at which the data network operates (refer to instantaneous data transfer and total data
throughput measures in table 3). The other disadvantage to this use of the Global Memory is
that it could become a bottleneck if it is in more than one data transfer path as we found in
figure 16. Because tasks are scheduled simultaneously and there is only one access port on
the Global Memory element, contention for data at the Global Memory can delay task
scheduling. Care must be taken in mapping the application to ensure that there are enough
Global Memory elements in the system configuration to avoid such contention.

4.6.3 Processing Elements (FPPEs)

Two features of the Floating Point Processing Element add significantly to its high
level of performance. A function generator allows it to perform division, square root, and
exponential functions in one or two clock cycles. This ability lends more strength to the
MFLOPS rating of the device, because these functions often take 30 floating-point operations
or more to be computed on other processors.

Another strength of the FPPE is its memory structure. Data memory is double buffered,
to allow the processor to operate on one data set while I/ operations are being performed on
another data set. This feature allows the processor to attain a very high operating efficiency.
Programming experience showed, however, that the small data memory size (16,384 words)
limits task sizes. The maximum size complex FFT that the FPPE can perform, for example,

44

is 4,096 points (the FFT macros did not use an "in place" algorithm). In addition, because
some tasks perform more operations per data point than others, this may limit the user's
ability to balance task sizes and gain maximum FPPE utilization.

Another cost of the complex nature of the FPPE structure is the complexity of
pro'anu-niig the ,i,,.,.. Th. device is prog-rnm d in a proprietary microcode that re-quires
considerable expertise to use. While the macro library is comprehensive enough to provide
for most radar signal processing tasks, a major investment is required for optimizing new
functions by writing new macros or modifying existing macros.

4.6.4 Software Development

The set of software development tools included in the CSP system is comprehensive. A
well structured programming methodology is supported by a clear recognition implicit in the
tool set that the system engineering is performed on distinct levels. By creating a clear
division and structured interfaces between the system level, data flow graph execution level,
and processing element level, the tools support a team approach to application design and
enhance productivity and maintainability of application software.

On the other hand, the process of data flow graph specification development is very
time consuming. Each new compilation of the graph and simulation of the graph execution
cycle takes about one and one-half hours on a MicroVax. This would be shorter on a more
powerful platform, but is nevertheless a long recompilation cycle. The use of graph
execution variables helped shorten the cycle, but use of an incremental graph recompilation
method, or some other improved compiler technology, might improve turn around time.
Another problem is that the graph specification language contains a lot of detailed buffer
specification that could be automatically generated by a more sophisticated graph
specification tool. Such a tool, perhaps with a graphical interface, would significantly
enhance productivity of application developers.

4.6.5 Summary

In the final analysis, a system can only be judged against the stated objectives of the
design. The system design began in 1984, at a time when technology was not available to
provide 1,000 MFLOPS peak performance systems. The system was conceived to allow
inclusion of future technology improvements, and in this it has succeeded. System upgrades
are continuing, with future improvements currently planned to provide a factor of 4
improvement in memory and processing capacity. While programming the system is an
awkward process, it is true that an elegant programming process was not a goal of the system
design. The use of a static task execution model has limited the scope of applicability of the
system, but at the same time allows for low processing element execution overhead and has
avoided requirements for increased software development tool support for developing highly
parallelized applications. However, although this system has successfully avoided the
requirement for dynamic execution assignment and more comprehensive support for parallel
processing software, it will likely be a requirement of future large scale parallel processing
systems.

45

SECTION 5

CONCLUSION

The goal of this project's performance measurement work with the Common Signal
Processor %as to devt1op an approach to and gain an understanding of the problem of system
performance measurement of parallel processing systems in the field of digital signal
processing. In the previous section, the results of the CSP measurements are presented
essentially as an example of performance measurement that follows the approach outlined in
section 2. This section summarizes the method used on the CSP, comments on the value and
limitations of the approach taken in relation to the goals of benchmarking outlined in the
introduction, and points to further work to be done to improve the process.

The prerequisite for system measurement is availability of a system for testing. It is
theoretically possible to study a system architecture and prescribe some software to run on it,
in order to have it applied at a remote site by the technicians operating the system. However,
a major aspect of learning what the measures mean in context comes from operating the
system. This requires that the system be available for the development of the software as
well as the execution of prepared applications.

The role of the quantitative measures presented in this report have been consciously
deemphasized. Classically understood measures such as data network bandwidth and
processing elemcont throughput may not be clear when presented without the context. For
instance, if a data transfer invclves a store and forward step and becomes an integral part of
the task scheduling mechanisms, it is not comparable to another system that uses a point-to-
point transfer mechanism. Or, if a processing element contains support modules to perform a
square root in one clock cycle, the square root operation can only be counted as one real
floating point operation. This is not, however, the same floating point operation -'n a
different system that performs the same calculation with 30 floating point operati,,,s. This
feature of performance measurement is likely to become more pronounced in the future, if
current trends in increased levels of integration and parallelism continue. In the absence of a
common programming model, useful performance measures must be reported with
significant amounts of context and subjective user experience.

The effectiveness of architectural features must be judged against their intended
function. In the case of the CSP, for example, if dynamic reconfiguration was not a
requirement of the original target applications when the system was designed, the feature
which gains high processing element utilization at the expense of dynamic configuration is a
successful feature. The scheduling overhead time should be judged, however, in comparison
to other systems that also use a static task assignment execution model.

In the work presented here, a structure is provided with a three step approach outlined
in section 2. The first step is to study the physical aspects of the system and its primary
functional elements. This represents a preliminary description of the theoretical system
capability, and provides the basic understanding of the system required to proceed with the
measurement process. The next two steps, testing an application and taking abstract
measures, are mutually supportive aspects of the measurement process. Programming the

47

application tests the software development tools and leads to an understanding of system
operation. The performance measurements it yields are, however, specific to one application
only. The second set of measures, the abstract measures, can be made with validity only
after some familiarity with the system has been obtained, and are therefore made after the
application measures.

As stated in the introduction, comparing different digital signal processing systems with
a "benchmark" is hindered by the absence of a common programming model. The abstract
measures provide the "benchmark" against which to measure a single system performance. It
serves to stress the system, thereby showing its limitations. A comparison of the abstract
measures against the peak measures usually will demonstrate the system bottlenecks, and
actual performance limits and shows how effective the system control mechanisms are in
utilizing the system resources. It also lends some reality to the peak measures that are always
the most general means of describing system performance. On the other hand, abstract
measures compared to the application measures indicate how close to optimal the application
performance is and how well the system can be utilized for the class of problems represented
by the application. The comparison may also indicate potential for improvement in
application performance and advantages and disadvantages to particular architecture features.

There is a basic issue not addressed by the approach used here. In the absence of a
programming model common to the class of systems that we are targeting, the capacity to
perform specific applications can be effectively tested in an absolute sense only by applying
operations to the system that are similar to the application. Doing this, however, is not
necessarily the process of benchmarking. In particular, it does not save the programmer the
trouble required to program his application before he can learn about the system's ability to
perform it.

In the continuation of this work, plans for the coming year include repeating the same
process on digital signal processors with architectures different from the CSP. In the process
of examining other zystems, the performance measurement approach will be further refined.
However, one result of the work thus far is a subjective judgment that a major improvement
in the generality of the benchmarking process requires a fundamental change in the process
of software development.

There are elements of the benchmark effort that can be used toward developing a new
way of developing software. As a conclusion to this report on "work in progress," what
follows is a brief outline of our current concept of how the process of software development
can be redefined. The concept is analogous to the progression of accepted program
development practice on general purpose uniprocessor systems from the use of assembly
language to the wide spread use of high level languages. Languages such as C and Fortran
are now used with little knowledge needed of the system to which they are being applied.
They provide the programmer with operation constructs such as iterations and branching
structures and data constructs such as arrays and pointers that capture the fundamental
building blocks of the software while hiding the underlying details of the system architecture.
"The programmer uses the high level language to express the processor instructions and the
compiler translates the program to machine language.

48

In the same way, we want to find the set of operations and data structures that are
fundamental to describing digital signal processing applications, independent of the
architecture upon which they are to be executed. Example data structures are matrices and
trees and example operations are matrix multiplication and inversion or searches and sorts of
elements in a tree.

Efforts to find a fundamental set of operations that apply performance measurement to a
variety of systems naturally extend to finding the elements of applications common across
different systems. They also serve the same objectives of the benchmarking effort, that is to
improve understanding of existing systems and the architecture features required for
fundamental improvements in performance. Just as Reduced Instruction Set Computer
architectures have developed to support efficient compilation of high order languages on a
general purpose uniprocessor system, it is natural to expect the acceptance of digital signal
processing instruction set powerful enough to gain acceptance across different systems will
eventually lead to the development of architectures that are intended to support its efficient
implementation. Regardless of the compilation process that applies instructions to the
system, one set of operations could be applied to a number of systems to make a valid
comparison of performance.

49

LIST OF REFERENCES

1. Nowacki, C. L., and L. A. Crook, October 1991, Design of the Open Modeling System,
MTR-1 1261, The MITRE Corporation, Bedford, MA.

2. Cenkl, M., and C. L. Nowacki, October 1991, Techniques for Mapping Algorithms to
Parallel Signal Processors, MTR- 11266, The MITRE Corporation, Bedford, MA.

3. Michaud, M. C., G. M. Whitaker, J. B. Goethert, and M. A. Schroeder, October 1991,
Parallelism in Signal Processing Algorithms: Final Interim Report, MTR-10824, The
MITRE Corporation, Bedford, MA.

4. Lyon, Gordon, 1989, Design Factors for Parallel Processing Benchmarks, Theoretical
Computer Science, North-Holland, Amsterdam, Vol. 64, pp. 175-189.

5. Ferrari, D. G. Serazzi, and A. Zeigner, 1983, Measurement and Tuning of Computer
Systems, New Jersey: Prentice-Hall, Inc.

6. Jain, R., 1991, The Art of Computer Systems Performance Analysis, New York: John
Wiley & Sons.

7. Common Signal Processor Applications User's Guide, Document Number 118A636,
7 September 1990, International Business Machines Technical Document.

-U..& GOVERNMENT PRINTING OFFICE 199 :-70-o9 '-_60;.7

51

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 3) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C 31 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

